autodiff
Auto Differentiation
3.1.1. Auto Differentiation
EnzymeAD/Enzyme.jl: Julia bindings for the Enzyme automatic differentiator
Julia:
FluxML/Zygote.jl: Intimate Affection Auditor
JuliaDiffEqFlux organization
JuliaDiff/ForwardDiff.jl: Forward Mode Automatic Differentiation for Julia
JuliaDiff/ReverseDiff.jl: Reverse Mode Automatic Differentiation for Julia
JuliaDiff/AbstractDifferentiation.jl: An abstract interface for automatic differentiation.
kailaix/ADCME.jl: Automatic Differentiation Library for Computational and Mathematical Engineering
chakravala/Leibniz.jl: Tensor algebra utility library
briochemc/F1Method.jl: F-1 method
Python:
pytorch/pytorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration
tensorflow/tensorflow: An Open Source Machine Learning Framework for Everyone
Similar to SciMLSensitivity.jlAMICI-dev/AMICI: Advanced Multilanguage Interface to CVODES and IDAS
Auto Difference
Julia:
QuantEcon/SimpleDifferentialOperators.jl: Library for simple upwind finite differences
Python:
PyLops/pylops: PyLops – A Linear-Operator Library for Python
Differential Optimization (Conditional gradients)
Julia:
jump-dev/DiffOpt.jl: Differentiating convex optimization programs w.r.t. program parameters
gdalle/ImplicitDifferentiation.jl: Automatic differentiation of implicit functions
matbesancon/MathOptSetDistances.jl: Distances to sets for MathOptInterface
axelparmentier/InferOpt.jl: Combinatorial optimization layers for machine learning pipelines
python:
cvxgrp/cvxpylayers: Differentiable convex optimization layers
Subgradient, Condition, Projected, Proximal gradients
Julia:
Proximal:
JuliaFirstOrder/ProximalOperators.jl: Proximal operators for nonsmooth optimization in Julia
JuliaFirstOrder/ProximalAlgorithms.jl: Proximal algorithms for nonsmooth optimization in Julia
ReviewPyLops/pyproximal: PyProximal – Proximal Operators and Algorithms in Python
Condition Gradient:
Derivatives of Special Functions
cgeoga/BesselK.jl: An AD-compatible modified second-kind Bessel function.