probablisticmachinelearning
3.6. Probablistic Machine Learning and Deep Learningโ
Julia:
mroavi/JunctionTrees.jl: A metaprogramming-based implementation of the junction tree algorithm.
Python:
Probabilistic machine learning
OATML/bdl-benchmarks: Bayesian Deep Learning Benchmarks
3.6.1. GANโ
Julia:
Python:
torchgan/torchgan: Research Framework for easy and efficient training of GANs based on Pytorch
3.6.2. Normilization Flowsโ
Julia:
slimgroup/InvertibleNetworks.jl: A Julia framework for invertible neural networks
FFJord is impleted in DiffEqFlux.jl
Python:
Surveyjanosh/awesome-normalizing-flows: A list of awesome resources on normalizing flows.
3.6.3. VAEโ
Julia:
Python:
Variational Autoencoders โ Pyro Tutorials 1.7.0 documentation
AntixK/PyTorch-VAE: A Collection of Variational Autoencoders (VAE) in PyTorch.
subinium/Pytorch-AutoEncoders at pythonrepo.com
Ritvik19/pyradox-generative at pythonrepo.com
3.6.4 BNNโ
RajDandekar/MSML21_BayesianNODE
bayesian-neural-networks ยท GitHub Topics
3.6.5 Diffusion-Modelsโ
3.11. Optimal Transportationโ
Julia:
JuliaOptimalTransport/OptimalTransport.jl: Optimal transport algorithms for Julia
Python: